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ABSTRACT 
Thermal solidification processes are an important concern in today's manufacturing technology. Because 
of the complex geometric nature of real-world problems, analytical techniques with closed-form solutions 
are scarce and/or not feasible. As a consequence, various numerical techniques have been employed for 
the numerical simulations. Of interest in the present paper are thermal solidification problems involving 
single or multiple arbitary phases. In order to effectively handle such problems, the finite element method 
is employed in conjunction with adaptive time stepping approaches to accurately and effectively track the 
various phase fronts and describe the physics of phase front interactions and thermal behaviour. In 
conjunction with the enthalpy method which is employed to handle the latent heat release, a fixed-grid 
finite element technique and an automatic time stepping approach which uses the norm of the temperature 
distribution differences between adjacent time step levels to control the error are employed with the scale 
of the norm being automatically selected. Several numerical examples, including single and multiple phase 
change problems, are described. 
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INTRODUCTION 

Solidification processes are of importance in today's manufacturing technology. During the past 
two decades, it has seen extensive interest and activity in the modelling and analysis of numerous 
applications in solidification processes1-17. Various techniques have been employed including 
analytical and numerical methods. Because of the complexity of real world problems, numerical 
techniques can be seen to be well suited for the computational simulation of solidification 
problems. Traditionally, the finite difference method (FDM) has been used. But, during the last 
twenty years, a widespread interest has been shown in the finite element method (FEM) for such 
problems. Due to the ability of FEM to handle complex geometries and boundaries, the ease 
in implementing arbitrary boundary conditions, and the capability of being implemented in a 
flexible general purpose manner, it is the chosen method in this paper. Although many 
investigations of solidification involve a single phase change situation, the simultaneous 
co-existence of multiple phases increases the complexity and also has applications to several 
practical engineering problems. 

For the transient analysis in the simulation of solidification processes, it is well known that 
it may be a difficult task to choose proper and optimal time steps for the integration of the 
associated transient heat transfer problem in practical applications. The task of choosing the 
proper time step has often been considered as being a matter of experience and, in most of cases, 
simply a uniform time step, i.e. time step Δf = constant, has been traditionally employed in the 
computational simulations. Approaches to involve mixed time integration have also been 
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attempted18 but for single phase change situations. Much of the past work in conjunction with 
finite elements has mostly focused attention on single phase change situations. More recent 
efforts by Ouyang and Tamma19,20 show new finite element developments to handle multiple-
phase front situations which are important in several practical problems. However, attention 
was confined to only a single uniform time stepping strategy. The development of efficient 
strategies for automatic time stepping which arise in transient finite element analysis of phase 
change problems is an important area of research and has significant potential for practical 
applications since it is well known that efficient strategies make good use of computational 
resources and allow more complex solution algorithms to be effectively studied. 

The present work is concerned with and permits solidification processes, including an arbitrary 
number of multiple phases to co-exist simultaneously, in phase change problems. To accurately 
predict the solution behaviour and to effectively make good use of the computational resources, 
adaptive step-size selection strategies are considered for solidification problems involving phase 
change. The robustness of such strategies for nonlinear transient problems not only requires a 
theoretically sound approach but also requires an efficient implementation and evaluation 
procedure to determine the viability for practical applications. Adaptive algorithms are now 
entering into applications and adaptivity in both time selection and space sizing may be expected 
to become a standard feature of the FEM in the future. Qualitative error control is of obvious 
interest in applications, and efficient techniques for adaptive algorithms open doors for 
fascinating possibilities of computing accurate solutions to complex problems at optimal 
computational cost. 

For parabolic problems, Eriksson and Johnson21 and Johnson et al.22 introduced an automatic 
time stepping method by controlling the differences of dependent variable variation between 
adjacent time step levels. The approach was based on a posteriori error estimates and gives 
control of the global error. For a single change situation, Tadayon et al.18 describe an 
implicit-explicit approach for transient heat conduction analysis. 

In the present paper, for applications to solidification processes involving single phase or the 
simultaneous co-existence of arbitrary number of phases, in conjunction with the enthalpy method 
which is employed to handle the latent heat release and a fixed-grid finite element technique for 
providing simplicity in the computations, an automatic time stepping approach is used. This 
employs the norm of the temperature distribution differences between adjacent time step levels 
to control errors for effectively and accurately simulating the transient behaviour and location 
of the phase fronts. Several numerical examples, including one and two-dimensional problems 
involving single and multiple phase change problems, are presented. 

THE GOVERNING MODEL EQUATIONS 
We consider the nonlinear transient heat conduction problem involving phase change where we 
seek to find T = T(x1..., xd, t), such that 

pc - .(k T) = Q in Ω, f>0 (1.a) 

T=TP on ∂Ωa, t>0(1.b) 
—qini = β on ∂Ωβ, t>0(1.c) 
T(●,0) = T0 in Ω (1.d) 

where the heat flux is defined as, 
qi= -kijT,j (1.c) 

Equation (1) represents a typical nonlinear transient heat conduction problem involving phase 
change, where T represents the temperature and d is the number of spatial dimensions, Ω is the 
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bounded domain in Rd with arbitrary boundary ∂Ω=∂Ωa ∂Ωβ and ∂Ωa ∂Ωβ = 0. Q, β, Tp, and 
T0 are given functions, k is the thermal conductivity, p and c are the density and specific heat, 
respectively. In general, they may be functions of T, i.e., 

p = p(T), c = c(T) and k = k(T) (2.a) 
We assume that the heat capacity pc and thermal conductivity k are bounded, i.e., there exist 

constants C1 and C2 such that, 
spc(x)≤C1, k(x)≤C2 x ε Ω (2.b) 

We describe later the use of enthalpy formulations for treatment of the effective heat capacity, 
pc in phase change problems. In particular by defining an enthalpy function, 

where T0 is a reference temperature. 

NUMERICAL FORMULATIONS 

Weak formulation 
Denoting, 

The set of trial and weighting functions are given as, 

Ψ = {T|T ε H1(Ω), T = TP on ∂Ωχ} (4.a) 
= {w|w ε H1(Ω), w = 0 on ∂Ωχ} (4.b) 

where H1(Ω) is the Hilbert space. For positive constants C1, C2, the problem can now be given 
the following equivalent weak formulation, 
For given T0, find T ε Ψ x I such that w e 

denotes the derivative of T with respect to time, (•, •) denotes the usual inner product, and 
I = [0, t] denotes the time domain, pc the heat capacity. 

Galerkin formulation 
Denoting and Ψh be a finite-dimensional subspace of and Ψ, i.e. 

where h is the scale of mesh size, the Galerkin formulation may be stated as, 
Find Th ε Ψh(Ω) x I such that wh e 
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Finite element formulation 
Let us divide the region into E elements with N nodes and represent Th in terms of basis function, 

where Φ is the basis function and x represents (x1 ...,xd). 
The matrix formulation may be defined as, 

Find Tj ε RN such that 
MijTj + KijTj=Qi t ε(0,tn) i, j = 1,2, . . . , N sum on j (8.a) 

T(0) = T0 (8.b) 
where (0, tn) is the time domain and, 

where the approximation for Ca is defined in (16) and the enthalpy formulation is introduced. 

TIME INTEGRATION 
The a-family of trapezoid methods has been used for the time integration23. 

where At is the time step and a is the integration parameter defined as 0≤a≤ 1. a≥0.5 is used 
in the present work for which unconditional stability exists. The thermal properties are evaluated 
at time n + a, i.e., 

where tn = n Δt and tn+1 = (n +1) Δt. A lumped capacitance matrix M is used in (10). Note that, 
when a ≠ 0, a Newton-Raphson type iteration is employed to compute Tn+1. 

ENTHALPY FORMULATION 
For solidification processes, for certain materials the phenomenon of phase change occurs over 
a wide band of temperature ranges. Such problems permit fairly reasonable approximations for 
physically modelling the situation. However, for several other materials, the phase change 
phenomenon takes place instantaneously with almost no temperature variation and are 
characterized by a Dirac-δ-type behaviour. These problems are somewhat more difficult 
computationally. 

The evolution of latent heat can be treated in terms of the thermophysical parameters, i.e. 
heat capacity pc, which is temperature dependent. The enthalpy method is an effective approach 
and a common practice to simulate the Stefan problem employing fixed-grids. The most significant 
difference between the enthalpy method and other methods is the formulation of the element 
heat capacitance on the heat-storage matrix Me. For the fixed-grid system, where the solidification 
front position is generally at an unknown location between nodes, the enthalpy method treats 
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matrix Me of the elements. An effective specific heat for an entire element through the use of 
the enthalpy function H is calculated. The freezing front flux condition is incorporated into a 
new form of the governing equations that is valid over the whole fixed domain (solid and liquid). 
The front locations are calculated after solving the problem using postprocessing operations. 
As a consequence, introducing the enthalpy formulation for effectively handling phase change 
problems, we define the enthalpy function, 

where the T0 is a reference temperature. For the Stefan problem, one can write 

where L is the latent heat while the subscripts s and L represent solid and liquid phase, 
respectively. Tm is the melting temperature. In the numerical implementation this direct evaluation 
requires spreading the phase change across a temperature interval and thus introducing a freezing 
range. This freezing range must be kept small to avoid too much deviation from the original 
phase change problem (Stefan problem). For the finite freezing interval [Tm—ΔT, Tm + ΔT], the 
enthalpy may be defined, 

where Tm1 = Tm—ΔT and Tm2 = Tm + ΔT and ΔT is a half-temperature range over which phase 
change occurs. The quantities cm=½(cs+cL) and pm = ½(ps + pL) are the specific heat and density 
in the freezing interval. 

With the above definition of the enthalpy function, the effective heat capacity may be defined as 

Because H is a unique function of temperature, the governing mathematical model equation 
involving phase change may be stated as, 

where Ca = (dH/dT). 
In the numerical simulation of phase change problems, approximating the term Ca in the 

element capacitance matrix Me is a critical step. Various approximation methods have been 
suggested and they are well documented in References 15 and 16. In the present study, we restrict 
attention to that due to Del Guidice et al.3 which has been cited to yield satisfactory results 
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and also based on our past experiences16,17,19,20, 

ADAPTIVE TIME STEPPING STRATEGY FOR SOLIDIFICATION PROCESSES 
The adaptive strategy described for applications to solidification problems involving phase 
change follows next and employs an automatic error control and solution approach. The nonlinear 
transient heat conduction problem involving phase change (16) can be given the following 
equivalent weak form. For a given T0, 

Find T ε Ψ x I such that 

For the discretization in time, let 0=t 0 <t 1 < ... <tm< ••• <tn, and Im(tm-1, tm], Δtm = tm-tm-1, 
where n is the total number of time steps. 

So the problem becomes, 
Fing T such that 

Since Δtm=tm—tm-1, the problem can be rewritten as, 

The adaptive strategy follows that proposed by Eriksson and Johnson21 for nonlinear parabolic 
problems, where, for a given tolerance δ > 0, we can select the time step Δtm, m = 1,2,...,n such that, 

or 

where C is a constant. The discrete solution satisfies, 

As a consequence, assuming that Tm-1 has been computed and q is a suitable constant (>1, 
and may be problem dependent), the following steps are then used to select At: 
(1) choose Δtm=Δtm-1 
(2) calculate Tm by Δtm 
(3) if 



ADAPTIVE TIME STEPPING APPROACHES FOR SOLIDIFICATION 43 

ΔTol≤| |Tm-Tm - 1 | |∞≤ΔTol (where ΔTol is a user prescribed quantity) 

then accept time step Δtm and go on next time step, otherwise decrease or increase Δtm by a 
factor F (user selected) and repeat the procedure started at (2). 

The estimated error employing the above is thus, 

That is, 

The above time stepping strategy for phase change situations is theoretically justified (due to 
Eriksson and Johnson21 and Johnson22) and can provide a posteriori error estimation. The cost 
of the time step control is considerably small. Since the implicit form of the methods are 
unconditionally stable when a≥0.5, the cirterion for selection of adaptive time steps is that 
based on accuracy issues. 

For the adaptive time stepping strategy, ΔTol can also be automatically selected to control the 
error employing the following proposed procedure: 
(1) Set the initial guess for Δ0

Tol × x%Tr, where Tr is the temperature range defined as T r=| T0 — Tp| 
in this work. Then compute the temperature distribution 0T according to Δ 0

T o l the time 
range ti=y%tn. 

(2) Set Δ1
Tol=ZΔ0

Tol, where z is a constant, and compute the temperature distribution 1T for Δ1
Tol 

for ti=y%tn. 
(3) If 

(25) 

then Δ0
Tol, is selected. Otherwise set Δ0

Tol = Δ1
Tol and 0T = 1T, and the procedure started from 

step (2) is repeated until (25) is satisfied. It should be noted that the parameters x, y, z and 
εtolerance are normally user specified quantities and tolerance levels for accuracy considerations. 

For certain types of problems it may be necessary to prescribe bounds for the time steps. For 
instance, in some cases it may be necessary to limit the time step by an upper value Δtmax in 
order to permit tracing of the temperature history in a certain time interval, while in other cases 
it may be necessary to ensure that the time steps do not go below a prescribed lower limit Δtmin 
in order to prevent excessive computational costs. The time stepping is adaptively controlled 
and the computational effort involved in adaptively adjusting the time steps following the present 
procedure is relatively small in comparison to employing a uniform constant stepping approach. 
Since the adaptive strategy is based on a posteriori error estimates, it follows that the algorithm 
is reliable in the above sense, and for || Texact — T||∞ < δ the error is bounded. The above mentioned 
approach enables control of the error and permits an efficient and optimal strategy for the 
numerical simulation of solidification processes involving the co-existence of arbitrary number 
of phases. This is demonstrated in the following section. 

NUMERICAL EXAMPLES 
Several numerical one-dimensional and two-dimensional test examples in thermal problems 
involving single and multiple phase change situations are presented in this section. An automatic 
time stepping strategy with qualitative error control is employed for the applications and the 
trapezoidal a-family of methods (a≥0.5) is used. Whenever feasible, the numerical solutions are 
compared with an analytical solution as in the first and third example for single phase change 
situations, while the results presented for multiple phase front situations have been validated 
(not shown here) with those involving a single uniform time stepping strategy. 
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Table 1 Thermal properties of water 

Heat conductivity in solid ks 
Heat conductivity in liquid kL 
Specific heat in solid cS 
Specific heat in liquid cL 
Density in solid pS 
Density in liquid pL 
Latent heat L 
Melting temperature Tm 

2.179 W/m-K 
0.588 W/m-K 

1966.48 J/kg-K 
4184.00 J/kg-K 

921.1 kg/m3 

999.6 kg/m3 

334720 J/kg 
273 Κ 

One-dimensional single phase change problem 
In this example, solidification in a one-dimensional semi-infinite region is studied. Initially, 

the region is considered to be liquid which is at a temperature higher than the melting temperature 
Tm. The material properties are given in Table 1. 

The initial and boundary conditions for the example are as follows, 
T(x,0)=328.56 K, T(0, 0=217.44 K, T(∞, t)=328.56 K 

The analytical solution of this problem can be found in the book by Luikov24, but has been 
derived by Stefan in 1899, 

where erf is the error function and the erfc is the complementary error function while the front 
position is, 

The value of λ is determined by solving the following characteristic equation, 

In the finite element analysis, a finite domain 0<x<l is used and only the solution at early 
time is considered to represent the semi-infinite slab. Twenty linear finite elements are used in 
this simulation and the length of the region is l=5.08 (cm). The integration parameter a = 1 in 
(10) is used and the heat capacitance is lumped. 

Figure 1 gives the comparative front positions for the analytical and present solution. Figure 
2 shows the adaptive time step history. It can be seen that the time step is automatically adjusted. 
During the early stage of the simulation, the time step is small since the temperature changed 
dramatically near x=0 where the sudden temperature boundary condition is applied. With time 
lapse, the temperature distribution is not as steep, so the time step is automatically adjusted to 
larger values. Efficient time stepping methods for computing the representative solution of such 
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problems require the time steps to adaptively adjust from small steps early in transient to 
increasingly large time steps to accurately monitor the exact solution. Figure 3 shows the error 
histories of numerical results with initial tolerance Δ0

Tol = 8 K and 32 K respectively, which also 
have been adaptively controlled. At the early stages the error is large since at t≥0, the boundary 
heat flux becomes infinite at x=0 [refer to (21)]. Also, one can see that the errors are significantly 
reduced by adaptively controlling the tolerance, Δ0

Tol. This means that the time step is in good 
agreement with the theoretical predictions. 

One-dimensional multiple phase change problem 
In this example, solidification involving multiple phase fronts in a one-dimensional finite 

region 0≤x≤l is studied. The temperature boundary condition is applied at x = 0 and an 
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adiabatic surface is assumed at x = l. Initially, the region is assumed liquid which is at a temperature 
higher than the melting temperature Tm. The material properties are given in Table 1. 

The initial and boundary conditions for the example are as follows, 
T(x,0) = 328.56 K 
T(0,t) = 217.44 K 0<t≤1000(sec) 
T(0,t) = 328.56 K 1000<t≤1800(sec) 

Twenty two-noded elements are used in this simulation and the length of the region 1 = 5.08(cm). 
The integration parameter a= 1 in (10) is used. 

Figure 4 gives the multiple phase front position history for the problem and Figure 5 shows 
the adaptive time step history. The physics of the multiple existence of two phase fronts is evident 
from Figure 4. It is interesting to note that with the initiation of the second front, the first phase 
front starts traversing backward until the two phase fronts coalesce at a later time. It is also 
interesting to note that to account for changes in boundary conditions and temperature gradients, 
the time steps are adaptively adjusted and controlled to meet the adapted tolerance requirement. 

Two-dimensional single phase change problem 
In this example, solidification in an infinite corner region is studied. Initially, the region is 

assumed liquid which is at a temperature higher than the melting temperature Tm. The material 
properties are given in Table 2. 

Table 2 Thermal properties 

Heat conductivity in solid kS 
Heat conductivity in liquid kL 
Specific heat in solid cS 
Specific heat in liquid cL 
Density in solid pS 
Density in liquid pL 
Latent heat L 
Melting temperature Tm 

1.0W/m-K 
1.0 W/m-K 
1.0J/kg-K. 
l.0J/kg-K 
1.0 kg/m3 

1.0 kg/m3 

0.25 J/kg 
0.5°C 
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The initial and boundary conditions for the example are as follows, 
T(x, y,0) = 0.3°C, T(0, y, t)=T(x,0, t) = - 1.0°C, T(∞, ∞, t) = 0.3°C 

A total of 144 four-node elements and integration parameter a = 0.5 in (10) are used. The 
nalytical solution and the non-dimensionalized interface position is given by Rathjen and Jiji25, 

where C=0.159, u = 5.02, l = 0.70766, y* = y/ and x* = x/ a (=k/pc) is the thermal 
diffusivity (a = 1 in this example). Figures 6 and 7 give the comparative front positions along the 
diagonal line and x=1.9 (m) line, respectively. It can be seen that the present solution results 
agree well with the analytical solution. The adaptive time step history is shown in Figure 8 for 
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ΔTol = 0.1°C which was adaptively adjusted. The error histories for different tolerances are shown 
in Figure 9 and it is clear that the errors can be controlled by adaptively adjusting the tolerances. 
The non-dimensional comparative front positions are given in Figure 10 and are in excellent 
agreement with the analytical solution. 

Two-dimensional multiple phase change problem 
In this example, solidification involving multiple phases (co-existence of three phase fronts) 

in a finite corner region is studied. Initially, the region is assumed liquid which is at a temperature 
higher than the melting temperature Tm. 
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The initial and boundary conditions for the example are as follows, 
T(x,y,0) = 328.56 K 
T(0, y, t) = T(x, 0, t) = 217.44 K 0< t≤ 350(sec) 
T(0, y, t) = T(x, 0, 0) = 300.78 K 350<t ≤460(sec) 
T(0, y, t) = T(x, 0, t) = 217.44 K 460 < t(sec) 

The finite element model employed 400 four-node elements and the integration parameter 
a= 1.0 in (10) was used. 

The material properties are given in Table 1. Figure 11 shows the geometry of the square 
region. Figures 12 and 13 show the front positions for the multiple phase change problem and 
Figure 14 shows the adaptive time step history for this example. 

It is interesting to observe the movement of the various phases, their interaction as time 
progresses and their behaviour (direction) when other phase fronts are initiated. The present 
problem clearly illustrates and provides a good understanding of the thermal behaviour and 
phase front interactions for two-dimensional regions. 

From the above examples, it is clear that the adaptive time stepping approach is not only 
simple but is also efficient in controlling the global error in the simulation domain. The adaptive 
formulations are based on a posteriori error estimates leading to a reliable method and the 
numerical examples demonstrate the effectiveness and efficiency in controlling the global error. 

CONCLUDING REMARKS 
Solidification problems involving phase change with single or multiple co-existence of phases 
are described and have applications in many practical areas of engineering. The numerical 
simulations provided an accurate understanding of the thermal behaviour and phase front 
movements and interactions. The present simulations employed a robust adaptive time stepping 
strategy which is very cost-effective, especially for non-linear transient problems with phase 
change. The approach is very simple but yet is efficient and gives control of the global error for 
preserving solution accuracy. 
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